HB HoopBio

EasyDigital ESR1

QuanStudio[™] Absolute Q[™] Digital PCR System

08337201 for EasyDigital ESR1 (50 reactions)

Breast Cancer is the most frequent female malignant tumor, and the leading cause of cancer death in women worlwide (accounting for 25% of the cancers in women and 12% of the cancers in men and women).

The most common breast cancer subtype is hormone receptor positive, expressing the estrogen receptors (ERs) and/or progesterone receptor, accounting for approximately 75% of breast cancers. Estrogen receptor Alpha (ERa) encoded by the ESR1 gene is a member of the nuclear hormone receptor superfamily that is expressed in ~70% of newly diagnosed breast cancers. ESR1 mutations were discovered in breast cancer in 1997. Mutations resulting in the amino-acid substitutions (E380Q, L536H, L536R, L536P, Y537C, YY537N, Y537S, D538G were the most characterized mutations). D538G, Y537S and E380Q were the most common alterations, found in 54%, 33% and 26% of ESR1 mutant samples, respectively.

The **EasyDigital ESR1** enables the detection of the mutations: E380Q, L536H, L536R, L536P, Y537C, Y537N, Y537S, D538G with high sensitivity and specificity. The EasyDigital ESR1 has been designed to be used in the QuantStudio TM Absolute Q TM Digital PCR System. The assay includes oligonucleotides and fluorescent probes for the amplification of the mutations of the gene ESR1.

Longenerations and the second se

The **EasyDigital ESR1** has been validated for the QuantStudio TM Absolute Q TM Digital PCR System. Digital PCR (dPCR) is a precise technique that allows absolute nucleic acid quantification of low amounts of targets.

- dPCR system: QuantStudio TM Absolute Q TM Digital PCR System
- Number of reactions: 50
- 4-16 samples per dPCR run (MAP16 Plate)
- The assay includes oligonucleotides and fluorescent probes for the amplification of the mutations of the gene ESR1
- Software easy to use
- Results in copies/µl

